

Polyflor Australia Fire Certificates for NCC Spec C1.10 Compliance

Polyflors' products are manufactured and tested in the UK.

Polyflor has gone to great lengths to have the UK laboratory, Shirley Technologies Limited, Wira House BCTC, UKAS accredited to perform the fire test required by the Australian NCC, AS ISO 9239.1-2003.

In the Definitions section of the NCC, an Accredited Testing Laboratory means—

(a) an organisation accredited by the National Association of Testing Authorities (NATA) to undertake the relevant tests; or

(b) an organisation outside Australia accredited to undertake the relevant tests by an authority recognised by NATA through a mutual recognition agreement;

Polyflors' test certificates comply with definition (b). NATA is a signatory of ILAC (International Laboratory Accreditation Cooperation), a Mutual Recognition Program where international accreditation programs, like NATA, are recognised as similar acceptable quality standards.

UKAS is also a signatory and results obtained by a UKAS certified lab are recognised by NATA under this ILAC-MRA agreement.

The laboratory Polyflor uses, BCTC, is UKAS certified to perform AS ISO 9239.1-2003. This compliance is available via their website and is also stamped on the report.

Regarding terminology, in the definitions section of the NCC, *Critical radiant flux means the <u>critical heat flux</u> at extinguishment as determined by AS ISO 9239.1.*

The *smoke development rate* as required under Clause 3 of Specification C1.10 is determined from the AS ISO 9239.1 test method and is by measurement of the smoke obscuration over time. This is expressed as Smoke Obscuration % x minutes.

The AS ISO test method has been developed from International Standards and hence the reason why the difference in terminology to the NCC.

The supplied fire certificate is acceptable in Australia as it is the Australian test performed by a NATA recognised certified laboratory for compliance to Specification C1.10 Clause 3.

Confidential Report

Our Ref: 26/02150B/02/17

Notified Body for PPE Directive, Construction Products Regulation & Marine Equipment Directive I.D. No. 0338 & 0339

Wira House, West Park Ring Road, Leeds, LS16 6QL, UK.

Telephone: +44 (0) 113 259 1999 Email: info@bttg.co.uk

Website: www.bttg.co.uk

Date: 16 February 2017

Our Ref: 26/02150B/02/17

Your Ref:

Page:

1 of 5

Client: Polyflor Ltd PO Box 3

Radcliffe New Road

Whitefield Manchester M45 7NR

Job Title: Fire Test on One Sample of Flooring

Client's Order No: 2224655

Date of Receipt: 6 February 2017

Description of Sample(s): One sample of flooring, referenced;

Sample Reference: Affinity Nominal Thickness: 2.0 mm Weight per Unit Area: 3.60 kg/m2

Batch No: Α Shade: 1

Work Requested: We were asked to make the following test(s):

AS ISO 9239-1:2003

- subcontracted test, UKAS accredited
- ** subcontracted test, EN ISO/IEC 17025 accredited
- *** not UKAS accredited

Wira House, West Park Ring Road, Leeds, LS16 6QL, UK. Telephone: +44 (0) 113 259 1999

Email: info@bttg.co.uk

Website: www.bttg.co.uk

Date: 16 February 2017

Our Ref: 26/02150B/02/17

Your Ref:

Page: 2 of 5

Client: Polyflor Ltd

FIRE TESTS ACCORDING TO AS ISO 9239-1:2003

Reaction to fire tests for Floorings - Part 1: Determination of the burning behaviour using a radiant heat source (ISO 9239-1:2002)

Date of Test: 15/02/2017

Conditioning

The specimens were conditioned in accordance with BS EN 13238:2002. The substrate used was a fibre cement board (ISO 390) with a thickness of (6 ± 1) mm and a density of $(1,800\pm200)$ Kg/m³ representing the standard substrate of Class A1fl or A2fl.

Procedure

The test was carried out in accordance with AS ISO 9239-1. The sponsor sampled and cut the specimens to the dimensions stated.

Specimens were individually placed in the combustion chamber and allowed to preheat for two minutes under a radiant panel, which gives an imposed radiant flux ranging from approximately 11.0 kW/m^2 to 1.0 kW/m^2 along the specimen.

The pilot flame used was the line burner as described and was applied to the surface of the specimen for 10 minutes and then removed.

The flame front was measured at the end of the test or at 30 minutes if applicable.

Test termination was considered to be when the flame front self extinguished or at 30 minutes, which ever is the sooner.

The heat flux from the panel incident on the specimen when self extinguished or at 30 minutes (critical heat flux CHF or HF-30) was calculated from a prior calibration.

Wira House, West Park Ring Road, Leeds, LS16 6QL, UK. Telephone: +44 (0) 113 259 1999

Email: <u>info@bttg.co.uk</u> Website: <u>www.bttg.co.uk</u>

Date: 16 February 2017

Our Ref: 26/02150B/02/17

Your Ref:

Page: 3 of 5

Client: Polyflor Ltd

Results

The test results relate to the behaviour of the test specimens of a material under the particular conditions of test; they are not intended to be the sole criterion for assessing the full potential fire hazard of the materials in use.

Specimen No.	<u>Direction</u> of spec.	Smoke Ob Develo Max %	scuration/ pment <u>% x min</u>	Maximum Flame front (mm)	Heat Flux-30 (HF-30) (kW/m²)	Critical Heat/Radiant Flux (CHF/CRF) (kW/m²)	<u>Duration of</u> <u>Flaming</u> (sec)
1	Machine	22	109	70	>11.0	>11.0	728
2	Across	42	128	80	>11.0	>11.0	731
3	Across	35	131	65	>11.0	>11.0	730
4	Across	47	143	60	>11.0	>11.0	736
Mean of 3 specs.	Across	41	134	68	>11.0	>11.0	732

<u>Distance</u>		<u>Time for each spec</u>		
Burnt (mm)	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>
50	576	240	300	335
100				

Note

One specimen was initially tested in each direction and whichever direction gave the worst result a further two specimens were tested. Only the results of the 3 specimens in the same direction were used to calculate the mean results.

The specimens of floor covering were tested adhered to a 6mm fibre cement board , as defined in BS EN 13238:2010 using Balls F44 Adhesive.

Wira House, West Park Ring Road, Leeds, LS16 6QL, UK. Telephone: +44 (0) 113 259 1999

Email: info@bttg.co.uk

Website: www.bttg.co.uk

Date: 16 February 2017

Our Ref: 26/02150B/02/17

Your Ref:

Page: 4 of 5

Client: Polyflor Ltd

Reported by:	25-1 corsa	B Marsden (Mrs), Fire Technician
Countersigned by:		P Doherty, Operational Head
Countered by		Policity, operational fload

Enquiries concerning this report should be addressed to Customer Services.

Wira House, West Park Ring Road, Leeds, LS16 6QL, UK.

Telephone: +44 (0) 113 259 1999 Email: <u>info@bttg.co.uk</u>

Website: www.bttg.co.uk

Date: 16 February 2017

Our Ref: 26/02150B/02/17

Your Ref:

Page: 5 of 5

Client: Polyflor Ltd

Uncertainty Budget - Annex

The uncertainty budget for AS ISO 9239-1 was determined as follows:-

Overall

The uncertainty varies down the length of the panel therefore:

At position between a Euroclass B to C \pm 15% At position between a Euroclass C to D \pm 15.5% At position between a Euroclass D to E \pm 17.5%

